
Python Simulation of Solar System

Pablo Morandé (s1976852)

March 2021

Contents

1 Introduction 2
1.1 Aim . 2
1.2 Theoretical Background . 2
1.3 Beeman Algorithm . 3

2 Methods 3
2.1 Class Structure . 3
2.2 Experiment 1 . 5
2.3 Experiment 2 . 5

3 Results 6
3.1 Orbital Periods . 6
3.2 Experiment 1 . 6
3.3 Experiment 2 . 7

4 Discussion 8
4.1 Orbital Periods . 8
4.2 Experiment 1 . 8
4.3 Experiment 2 . 8

5 Conclusion 9

1

Abstract

The aim of the project was to construct a simple animation of the inner planets
of the Solar System using Python. The Beeman Algorithm was used to calculate the
position and velocities of the different bodies at each time-step. This algorithm was
implemented as it conserves energy (Sum of kinetic and potential) better than other
algorithms.

1 Introduction

1.1 Aim

The aim of the project was to build a reasonable simulation of the Solar System, the purpose
of building that simulation was to perform two independent experiments.
The first experiment involved showing that the energy of the Solar System is conserved in
time.
The second experiment involved launching a satellite in the simulation at t = 0 so that
eventually it arrived to Mars.

1.2 Theoretical Background

The motion of the planets and the Sun in the Solar System is governed by the Force of
Gravity. This force is described by:

F12 = −Gm1m2

r2
r̂12

Where F12 is the force acting on body one due to body two, and r̂12 is the unit vector that
has origin in the position of body one and ends in body two. Therefore, it is easy to see that
Gravity is always attractive.
Therefore in a system with N bodies, the total force that each body will experience is given
by:

Fi =
N∑

j=0,j 6=i

−Gmimj

r2
r̂ij

In this case Fi is the total force experienced by body i, mi,mj are the masses of bodies i and
j respectively and r̂ij is the unit vector between the bodies i and j.
The total energy of the system is given by the sum of the potential and kinetic energy of
the system. The kinetic energy is calculated by the sum of the individual kinetic energies of
each body.

K =
N∑
i=0

miv
2
i

2

The potential energy of the system is given by:

V = −1

2

N∑
j 6=i

Gmimj

rij

2

1.3 Beeman Algorithm

While there is an analytic solution for the two body problem, there is none for the three
body problem or to the N-body problem.Therefore, the only feasible approach is through
numerical methods.
The Beeman Algorithm is a method for numerically integrating ordinary differential equa-
tions, which can be used to model the N-body problem. The position and velocity at each
step is given by:

r(t + ∆t) = r(t) + v(t)∆t +
1

6
[4a(t) − a(t− ∆t)]∆t2

v(t + ∆t) = v(t) +
1

6
[2a(t + ∆t) + 5a(t) − a(t− ∆t)]∆t.

Beeman’s Algorithm is a symplectic integrator, which means that energy is conserved (mostly)[1].
The use of numerical approximations makes impossible a full conservation of energy, so it
will produce oscillations around the average value.

2 Methods

2.1 Class Structure

The project was structured in 4 classes.

Celestial Body Class This class was used to represent the celestial objects. Each instance
of this class stored its position, velocity and acceleration at time t as a 2D vector (Numpy
Array), the acceleration on the previous time-step is also stored by all instanced of this class
as it is required for the Beeman Algorithm
The objects of this class were to update its position, velocity and acceleration using the
Beeman Algorithm. However, all of these methods required an additional parameter to
work, the time-step. This was left as a parameter as all the Bodies of the simulation must
have the same time-step, and therefore it was dangerous to leave it as a parameter that could
be inputted by the user in the constructor.
The class also included the methods to update the position, velocity and acceleration of the
body using Euler-Cromer algorithm, this only used to generate the graphs for the stability of
energy. Other methods included in this class were a method to get the sign of the y position
of the body and a method to calculate the initial velocity vector from the initial position.
The first method is used to check if the body has completed a period1. The latter is used
to calculate the initial velocity vector if a planet was initially not aligned with the x-axis.
The constructor of the class made a difference between three types of Celestial Bodies. Such
difference was implemented in order to set up the appropriate initial conditions:

1. Star
The initial position is set to the centre of the System, and it is assumed to have 0
velocity at the start.

1When a Body completes a period it y-sign changes from negative to positive and that can be easily
checked when updating the position

3

2. Planet
The initial position of the planets was always set at (orbital radius,0), where the or-
bital radius was a parameter of the constructor. The initial velocities of the Planets
where determined using the central potential approximation and a circular orbit.

v =

…
GMsun

r

3. Probe
The initial position of the satellite was set to (orbital radius Earth,radius Earth) as it
leaves from the surface of the Earth. There was only one instance of this type. The
velocity of the Probe was set to be the velocity of the Earth plus an additional velocity.

SolarSystem Class This class was used to represent the Solar System. The class was
responsible of storing all the Celestial Objects and updating them using the Beeman’s Al-
gorithm. The constructor of this class required a time-step as a parameter, this time-step
was used in the update of all the bodies (this is a way of forcing all the bodies to have the
same time-step in the simulation). The list of bodies that where stored into the instance
of this class was determined in the constructor, which loaded the lists of objects (and its
information) from a file supplied by the user.
The main methods of this class included the update methods (for both Euler and Beeman’s
Algorithm). These methods were responsible of updating the position, velocity and acceler-
ation of the bodies in the System.
For the Beeman’s update the class would update all the position of the planets, then all the
accelerations and finally the velocities. For the Euler-Cromer update, the order of update
would be all accelerations, all velocities and finally all positions. Both update methods re-
turned the total energy of the system after the update.
Other methods of this class include methods to calculate the kinetic energy, the potential
energy and the total energy at any stage and also methods involved with experiment 2. The
latter include a method to get the distance from the probe to the Earth and from the probe
to Mars and a method to set Mars in the optimal position for the orbital transfer.

Animation Class This class was used to build the animation, to perform this task each
instance contains a SolarSystem instance. The animate method updates the System once
and it will add the new position of all the objects to the animation. The plot method of the
class sets up the axis for the display and it initializes the animation using FunAnimation of
Matplotlib. This class includes other methods to generate the graphs included in the report.

Options Enum class used to represent the options of the simulation. The simulation can
be activated with a Probe launching from the Earth at t = 0 whit PROBE RUN or without
any Probe using the NORMAL RUN enum.

4

2.2 Experiment 1

This experiment consisted in showing whether energy was conserved by using Beeman’s
algorithm to update the information of the bodies on the Solar System. This section outlines
the methods used in this part of the project.
As the Beeman Algorithm is a numerical method it is not expected that energy is perfectly
conserved, as all is based on approximations. Also, even if the Algorithm itself allowed for
perfect energy conservation there would be float round errors that would make the perfect
energy conservation impossible to detect. Therefore, for this experiment it was decided to
show the energy of the system against the number of updates but to include also the result
that would be obtained by updating the same system with the Euler’s method. This makes
more sense than just showing the energy using the Beeman’s method as perfect conservation
is not possible. By including both in the same graph it is possible to compare them and
therefore to get an estimation of how good or bad are both of them compared with each
other. This was the best method to show the efficiency in conserving energy of Beeman’s
algorithm as rough data without something to compare would not tell anything.

2.3 Experiment 2

This experiment involved launching a probe from Earth’s surface to Mars. As the set up
for this experiment is slightly different the constructor of the class Solar System took a
parameter (Enum of Options) to decide which type of set up was required.
The set-up for this experiment involved locating Mars in an optimal position for the transfer
(44 degrees, based on Hohmann orbit transfer[2]). And adding the probe to the simulation.
The usual time-step for the simulation was 3600 seconds, this allowed the planets to move at
an appropriate pace. However, this large time-step failed to capture the correct behaviour of
the Probe near the Earth (Or other bodies), resulting in nonphysical results like the probe
going to the core of the planet. To address this issue a variable time-step was implemented
in the system class. If in a probe type run the probe is close (108 metres) to the Earth or
Mars the time-step would change to 50 seconds until this condition was no longer true.
This set up allowed to perform the experiments with high time-steps and still get viable
results. Lowering the time-step of the whole simulation would have been another valid
approach. However, undertaking this approach would result in needing a large number of
updates to get to Mars with the probe. Hence, it would have increased the computation
time.

5

3 Results

3.1 Orbital Periods

Using the simulation the orbital periods of the first four planets were obtained. The values
for the periods of the different planets are shown below in Earth years, the time-step used
to get these results was of 1 hour.

Mercury Venus Earth Mars

100

200

300

400

500

600

700

87.95

224.67

365.27

686.79

Planets

D
ay

s

Fig. 1: Displays the periods of all the planets included in the animation. These results
represent the average over several periods for each planet

3.2 Experiment 1

This experiment involved showing if the Energy is conserved in the simulation. For that
purpose the Euler-Crommer algorithm was also implemented. Two graphs have been in-
cluded below. The first shows the energy evolution of two identical systems using different
methods to update them and the second one displays the evolution of only the first system
in a different scale. The data of both graphs were obtained using the same initial system
and the same time-step to produce the same results, the only difference is the scale used to
present the data.

6

0 1 2 3 4 5

time(s) 1e7

−8

−6

−4

−2

E
n
er
gy

[J
]

1e27−6.2009900000e33

System With Beeman Updates

System With Euler Updates

Fig. 2: Energy of two identical systems over
time, one of the updated using Beeman’s al-
gorithm and the other one using Euler’s.

0 1 2 3 4 5 6 7

time(s) 1e7

−7

−6

−5

−4

−3

E
n
er
gy

[J
]

1e23−6.2009964620e33

System With Beeman Updates

Fig. 3: Energy over time of a system updated
with Beeman’s algorithm

3.3 Experiment 2

The second experiment involved launching a satellite from Earth at time t = 0 and set the
initial velocity in a way that it approached Mars. For a time-step of 1 hour and an initial
velocity of 11551.7 m/s the closest that the satellite was from Mars was about 107m. The
figure bellow shows the orbits of all the bodies calculated by the simulation under that initial
parameters for the satellite.

−3 −2 −1 0 1 2 3

x[m] 1e11

−3

−2

−1

0

1

2

3

y[
m
]

1e11

Sun

Mercury

Venus

Earth

Mars

Probe

Fig. 4: This Figure displays the orbits for all the bodies on the simulation given that the
initial velocity of the satellite (black line) is the optimum for it to approach Mars.

7

4 Discussion

4.1 Orbital Periods

It can be seen from Fig. 1 that the obtained values for the periods using the simulations
are close to the actual ones[3]. Discrepancies between the actual values and the ones found
in the simulation can be accounted by the fact that the initial velocities of all the planets
were calculated using the central-body potential approximation and assuming circular orbits
which is not correct. However, these discrepancies were small (all of them were within
0.001[3] of the actual value) and some discrepancy would always be expected as the method
used represents an approximation of the behaviour of the whole solar system.

4.2 Experiment 1

The data shown in Fig. 2 suggests that the Beeman Algorithm is much better than Euler-
Crommer algorithm to conserve energy. The only defect that can be noticed from the graph
is the initial jump of energy after the first update of the system. This can be justified by the
fact that the initial velocities were calculated under the assumption of circular orbits and
a central body potential. These assumptions are corrected after the first update when the
Beeman Algorithm starts to calculate the appropriate positions and velocities for the bodies.
After that initial jump the energy of the system updated by the Beeman Algorithm appears
to be constant. However, a closer look to the data in Fig. 3 suggests that the energy is
not totally constant and that it oscillates over time. This was expected as full conservation
cannot not be achieved by any numerical method and even if the model captured the complete
behaviour of the Solar System, there would be random errors due to rounding float numbers.

4.3 Experiment 2

The results obtained were sensible, the velocity is about 11000 m/s (39600km/h)which is
approximately the escape velocity from Earth and about the same velocity as Perseverance’s
launch velocity[4]. This velocity is also the same order of magnitude as the velocity required
to get to Mars using two Hohmann orbits transfer, one to get the Low Earth’s orbit and
then another one to get to Mars[5]. The distance obtained for this initial velocity was also
sensible as it’s the same order of magnitude as the distance from Mars to Deimos.
These results were possible with a big time-step like 3600 seconds or 10000 seconds (in
this case the optimal velocity was 11560 m/s) thanks to the variable time-step that was
implemented in the simulation. Without this feature those initial conditions and time-step
would result in nonphysical orbits for the satellite.
The orbit shown in Fig. 4 shows that when the satellite approaches Mars its trajectory
is affected by Mars gravity and as a result its orbit does no longer intersect Earth’s. By
changing the initial velocity it was possible to make the orbit of the satellite intersect the
Earths in expense of not getting that close to Mars.

8

5 Conclusion

Overall, the given model was found to capture really accurate the behaviour of the bodies of
the Solar Systems. The small discrepancies found between the real data and the calculated
by the simulation might arise from the fact that the model is just an approximation and that
the computer might make some errors in the calculations when rounding float numbers.
The two experiments were implemented in a way that the obtained results were sensible. This
was specially important in the second experiment, as conducting this experiment without a
variable time-step resulted in non-physical results for high time-steps (as 3600 seconds).

References

[1] Denis Donnelly and Edwin Rogers. Symplectic integrators: An introduction. 73(10):938–
945.

[2] NASA. Let’s go to mars! calculating launch windows. https://www.jpl.nasa.gov/edu/
teach/activity/lets-go-to-mars-calculating-launch-windows/. Accessed: 2020-
04-09.

[3] NASA. Period data. https://nssdc.gsfc.nasa.gov/planetary/factsheet/. Ac-
cessed: 2020-04-09.

[4] NASA. Trip to mars. https://mars.nasa.gov/mars2020/timeline/cruise/. Ac-
cessed: 2020-04-09.

[5] Arthur Stinner and John Begoray. Journey to mars: The physics of travelling to the red
planet. Physics Education, 40, 01 2005.

9

https://www.jpl.nasa.gov/edu/teach/activity/lets-go-to-mars-calculating-launch-windows/
https://www.jpl.nasa.gov/edu/teach/activity/lets-go-to-mars-calculating-launch-windows/
https://nssdc.gsfc.nasa.gov/planetary/factsheet/
https://mars.nasa.gov/mars2020/timeline/cruise/

	Introduction
	Aim
	Theoretical Background
	Beeman Algorithm

	Methods
	Class Structure
	Experiment 1
	Experiment 2

	Results
	Orbital Periods
	Experiment 1
	Experiment 2

	Discussion
	Orbital Periods
	Experiment 1
	Experiment 2

	Conclusion

