
Hybrid Genetic Algorithm

s1976852

March 2021

Contents

1 Algorithm 2
1.1 Introduction . 2
1.2 Motivation . 2
1.3 Sources . 2
1.4 Description . 2
1.5 Running Time . 3

2 Testing 3
2.1 Efficiency Tests . 3
2.2 Efficiency on Known Graphs . 4
2.3 Effect of the Euclidean Window . 5

Appendix A Images of Obtained tours 6

1

Abstract

The aim of this report is to show the results of applying a Hybrid genetic algorithm (HGA) to solve the
Travelling Salesman Problem. This Algorithm was found to be more effective in the search of optimal solutions
than the proposed algorithms (2-Opt and Greedy). However, the running time of the HGA was found to be
significantly higher than the time of other heuristics as 2-Opt.

1 Algorithm

1.1 Introduction

Genetic algorithms (GA) are inspired in biological process of Natural selection.
In Genetic Algorithms it is usual to start with a random population of feasible solutions, then that population is
ranked according to a fitness function that is problem dependant (1

tour value2
), the individuals with a higher fitness

are more likely to breed. The old population is replaced by the new one (which has the ’genes’ of the best parents),
To maintain diversity and to be sure that the algorithm does not get stuck in a local minimum so easily, each
offspring has a probability of mutation.
Genetic Algorithms are expected to converge[1] into the optimal solution as the best results from one generation
are taken to the next one and there is still room for variability due to mutations (in case that the algorithm initially
converges into a local minimum). The hybrid part of the algorithm comes from the fact that usually traditional GA
take a high number of generations to converge into an optimal solution. Therefore, 2-opt heuristic was implemented
inside the genetic algorithm to make the algorithm converge faster.

1.2 Motivation

The choice of this algorithm over other possible heuristics was highly motivated by curiosity. It was found interesting
the fact that one could use a biological procedure to obtain a good result for a problem that has little connection
with that field. The use of Genetic Algorithms to solve the TSP is really common and there were many resources
online that helped to develop the HGA.

1.3 Sources

The idea of using 2-Opt in combination with the Genetic algorithm was taken from the paper ”Integrating the Best
2-Opt Method to Enhance the Genetic Algorithm Execution Time in Solving the Traveler Salesman Problem”[2].
However, many other sources where use to decide the best implementation for the genetic algorithm. In the
mentioned paper they substitute the mutation operator by the 2-opt optimisation. This was not done in the
presented algorithm as it is believed that mutation is important to maintain diversity of the population. Instead,
the 2-Opt local search was always performed to a user-defined percentage of the population.

1.4 Description

1. Initialize
The initial population is constructed by randomly generating viable paths.

2. Selection
A roulette wheel selection was implemented, so all the individuals of a population can be chosen to be
parents of the new generation, but those with higher fitness are more likely to be chosen. Elitism was also
implemented, so that it is guaranteed that the best solutions always pass from generation to generation
(No mutation or optimisation is performed in this solutions and they directly pass to the new generation).
N − elite size crossovers will be needed after the selection phase is finished.

3. Crossover Operator
The choice of a good Crossover operator is essential to develop a good Genetic Algorithm. For the proposed
algorithm the Operator Chosen was a Greedy Crossover Operator. It tried to build a valid path by at each
step considering the next city proposed by both parents and selecting randomly one of the two, but taking as
weights for the probabilities the distance between the previously added city and the two possible choices. If

2

a city of one parent it moved to the next city of that parent to be considered, and if a city had already been
added to the path in construction and it was found in the other parent the program would also move to the
next city of that parent.

4. Mutation Operator
for this algorithm the Mutation operator consisted in just swapping two genes (cities) of an individual if a
random number was less than the probability of mutation. (This was tried for each node in each individual)

5. 2-Opt Local search
After producing the offspring the 2-Opt Heuristic is applied to a percentage (user-defined) of the children.
The selection of those which will be optimised through 2-Opt is random.

1.5 Running Time

The running time of the Hybrid Genetic Algorithm is polynomial on the size of the input (number of nodes) given
that the number of individuals in each population, the limit of generations and the number of iterations in each
2-opt is defined by the user (No left until the solution has totally converged). From now on N denotes the number
of individuals in a population, n denotes the number of nodes, G the number of generations and k the number of
optimisations in 2-opt. The initialisation phase just involves crating N possible solutions, which are arrays of n
numbers. So this phase involves generating n*N random numbers. Hence, it is bounded by O(n).
Then in each generation the algorithm needs to rank the generation, make the crossover, mutate and perform 2-
Opt on the Offspring. Ranking involves basically sorting the individuals using the fitness so it involves calculating
the fitness of all individuals NO(n) = O(n) and sorting the N individuals, which is independent of n. Then the
algorithm needs to perform the crossovers, it will perform N − elite size crossovers and in each crossover it needs
to build a new solution which will take up to O(n), so the total time spent in the crossovers will be bounded by
N − elite sizeO(n) = O(n). The same analysis applies for the mutation as the algorithm has to go trough all the
nodes of all the children, so that part also contributes O(n). Then the HGA performs 2-Opt on a percentage of
the children (user-defined, but at most 1), given that k is defined, each 2-Opt operation is bounded by O(n2), so
as the number of 2-Opt operations is defined this part will contribute O(n2) each generation. All of this will be
repeated each Generation G. So adding everything gives

O(n) + G[O(n) +O(n) +O(n) +O(n2)] = O(n2)

The last step is true given that G is defined and not a variable.

2 Testing

In this section some of the tests conducted in the HGA are presented. For contrast the tests were also conducted
using the proposed algorithms, Greedy and the combination of SwapHeuristics ans 2-Opt. All the tests were
conducted using the metric setting as they were easier to generate randomly and also there were plenty of famous
sets to compare with. For the purpose of testing the parameters used for the HGA were: N = 50, EliteSize = 5,
mutationRate = 0.1, G = 50,k = 10 and the percentage of childs at which the algorithm applies 2-Opt is 0.2,

2.1 Efficiency Tests

This section aims to explore the values obtained by the HGA and the other algorithms. To allow an in-depth
comparison several randomly-generated graphs were considered, with values ranging from 2 nodes to 50. For this
tests the value of k for the 2-Opt and Swap heuristic was set to 12, however, it is expected that varying k will
generate similar results.
Firstly the values obtained by the different algorithms were obtained for the different graphs, the results shown
below are represent one instance of those tests. However, similar results are obtained for any randomly generated
euclidean graph.

3

Fig. 1: This graph shows the best values obtained by each algorithm for graphs of different number of nodes, the
values are not important individually but when compared between the algorithms. HGA is found to perform better
in all instances, this behaviour was maintained in all the tests of this type. This graph represent one instance of
those tests.

Another important feature that can be tested on randomly generated euclidean graphs is the time taken by all
the algorithms. The number of nodes explored were the same that in the Efficiency tests. The results are shown
in the graph below.

Fig. 2: It is easy to see that the running time cost of the HGA is much greater than any of the two other
alternatives. The individual time values are not really important(As they will vary from one computer to another),
and one should focus on the comparison between the different algorithms.

2.2 Efficiency on Known Graphs

It is also important to test how close the algorithms are of the optimal solution, therefore our algorithms were
tested against some known graphs. The Graphs used in these tests were 0liver30, att48, st70, pr76, KD100, lin105,
xqf131.1

1The optimal tours were found on TSPLIB, however the actual optimal values will be different in our case as the function that we
used to calculate the distance is slightly different from the one used in TSPLIB, this does not change the fact that the optimum tour

4

Fig. 3: This graphs shows OptimumV alue
tourV alue vs the graphs, the closer to one the more optimum the solution is. It can

be seen that the HGA finds values close to the optimal solution (and even the optimal solution in some instances),
a better performance could be obtained by adding more individuals to the initial population or by increasing the
number of generations. However, this would have a great impact on the running time.

2.3 Effect of the Euclidean Window

The effect of expanding the window for the Euclidean TSP was explored by calculating the best tour with the
different algorithms for 30 nodes and varying the window. The results are shown below

Fig. 4: This graph shows the best values obtained by each algorithm for graphs of 30 nodes, the difference between
each graph is the range of values considered for the coordinates of each node (”The window”). It can be seen that
now great effect is detected by increasing the size of the window as the HGA is the best in all instances and Greedy
is usually the worst.

This ends testing and the proper report the appendix is optional and it does not include anything relevant for
the testing or the description of the algorithm.

given is actually the optimum

5

A Images of Obtained tours

This is left just as they are pretty.

Fig. 5: Tour obtained for att48 with HGA Fig. 6: Tour obtained for pr76 with HGA

Fig. 7: Tour obtained for st70 with HGA Fig. 8: Tour obtained for oliver30 with HGA

References

[1] Dana Bani-Hani. Genetic algorithm (GA): A Simple and Intuitive Guide.
https://towardsdatascience.com/genetic-algorithm-a-simple-and-intuitive-guide-51c04cc1f9ed.
Accessed: 14/03/2021.

[2] Sara Sabba and Salim Chikhi. Integrating the best 2-opt method to enhance the genetic algorithm execution
time in solving the traveler salesman problem. In Wojciech Zamojski, Jacek Mazurkiewicz, Jaros law Sugier,
Tomasz Walkowiak, and Janusz Kacprzyk, editors, Complex Systems and Dependability, pages 195–208,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

6

https://towardsdatascience.com/genetic-algorithm-a-simple-and-intuitive-guide-51c04cc1f9ed

	Algorithm
	Introduction
	Motivation
	Sources
	Description
	Running Time

	Testing
	Efficiency Tests
	Efficiency on Known Graphs
	Effect of the Euclidean Window

	Appendix Images of Obtained tours

