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Abstract

Using the data from the Heat Capacities of a Cu3Au initially ordered sample, the effect on the entropy of the order-
disorder (OD) transition is investigated. Following a similar analysis to the Artur Benisek and Edgar Dachs (BD) [1]
study, the final results on the total entropy change of the OD phase transition are compared with the ideal entropy of
mixing. It was found that the total entropy change of the disordering transition at 711.11K gave an excess entropy of
−0.172 (in units of R) when compared to the ideal entropy of mixing.
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1 Background Theory

1.1 Entropy and Ideal Entropy of Mixing

In thermodynamics, entropy is defined as the amount of re-
versible work into the system divided by the temperature of
the reservoir from which heat was taken. In a differential
form, it means that [2]:

dS =
dQrev

T

However, entropy is also a measure of ignorance. In terms of
statistical mechanics, entropy is defined as [2]:

S = k ln(Ω)

Where k is the Boltzmann’s constant and Ω is the num-
ber of microstates (ways of arranging the system) associated
with a particular macrostate. The larger the number of mi-
crostates, the larger the ignorance we have about the system
(We can only macrostate quantities like the temperature but
not the exact arrangement of atoms that give that temper-
ature). The ideal entropy of mixing is of particular interest
in this study. This entropy change refers to the change in
entropy caused by mixing two ideal gases that occupy ini-
tial volumes VA and VB , and they end up sharing the total
volume VA + VB . This entropy change is given by [2]:

∆Sideal = −R(χA ln(χA) + χB ln(χB)) (1)

Where χA and χB are the molar fractions of the gases. While
this formula is initially derived only for ideal gases, it can
also be used as an upper limit for the configurational entropy
change in some transitions in solids. Consider a binary solid
crystal formed by N atoms, initially in ordered (determined)
positions with N available positions in a lattice. Of those
N atoms, there are χAN atoms of type A and χBN atoms
of type B. There is only one way of arranging the atoms,
the one that defines the solid. After a particular process, the
atomic distribution of the solid becomes disordered, meaning
that the positions of the atoms on the lattice become fully
random1. Hence, after the phase transition, we need to place
NχA atoms of A and NχB atoms of B in a lattice of N sites
entirely randomly. Then there are Ω distinct ways of doing
so, where Ω is given by:

Ω =
N !

(NχA)!(NχB)!
(2)

These are the number of microstates associated with the
macrostate of having N partices arragned in a lattice of N
sites. Hence, the entropy change is given by (the entropy of

1This restriction can be stated in mathematical terms by imposing that all the individual partitions are equally likely
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the initial sample is zero as there is only one way of arranging
such the atoms in the ordered way):

∆Sconf = k ln

Å
N !

(NχA)!(NχB)!

ã
(3)

∆Scong = k ln(N !) − kln((NχA)!) − kln((NχB)!) (4)

∆Sconf ≈ −Nk(χA ln(χA) + χB ln(χB)) (5)

Where the last step is possible thanks to sterling’s approx-
imation. Taking N to be Avogadro’s Number, the latter
equation gives:

∆Sconf ≈ ∆Sideal (6)

Hence, the ideal entropy of mixing poses an upper limit for
the configurational entropy change of the process described
above. However, it is a theoretical limit as it assumes a
perfectly ordered sample at the beginning and a perfectly
disordered distribution at the end. These conditions mean
that when the configurational entropy change is measured
experimentally, it will be smaller than the ideal entropy of
mixing.

1.2 Use Heat Capacities

We can use Heat capacities to measure how the entropy
changes. The definition of Heat capacity states [2]:

CP =

Å
∂Q

∂T

ã
P

(7)

Meaning that the heat capacity tells how much heat it is re-
quired to input to the system to raise the temperature by 1K
while the pressure is constant.
On the other hand, the Enthalpy is defined as [2]:

H = U + V P (8)

And the differential version is obtained as follows:

dH = d(U + V P )

= dU + PdV + V dP

= dQ− PdV + PdV + V dP

= dQ + V dP

If the process occurs at constant pressure, then:

dH = dQ

Therefore it is easy to see that:Å
∂H

∂T

ã
P

=

Å
∂Q

∂T

ã
P

(9)Å
∂H

∂T

ã
P

= CP (10)

On the other hand, for reversible processes the differential
version of the entropy can be written as [2]:

dH = TdS + V dP (11)

Hence, it is possible to rewrite the expression for the Heat
capacity at constant pressure as:

CP = T

Å
dS

dT

ã
P

(12)

Equation 12 can be used to obtain the entropy change be-
tween a range of temperatures, moving T to the left side and
integrating both sides with respect of T the expression gives:

∆S =

∫ Tf

T0

CP

T
dT (13)

Where ∆S gives the entropy change that the system has un-
dergone between T0 and Tf

1.3 The use of entropy change

The measurement of entropy changes is helpful in studying
the properties of materials as changes in entropy hint at a
change in the structure and properties of the materials. In
this particular example, the change in entropy tells us that
the structure of the initial Cu3Au sample is changing. This
can already be seen from the heat capacity data, and it is
precisely what the peak in the heat capacity tells.

1.4 Order-disorder transitions and Cu3Au

At low Temperatures, the Cu3Au alloy presents a stable L12
ordered structure with Au atoms at the corners and Cu
atoms in the face centres. However, at around 660K, this
material undergoes a phase transition, in which some atoms
change their position, leading to a disordered face centred
cubic (fcc) structure [1, 3]. A disordered atomic distribu-
tion means that the lattice sites are occupied by Au and Cu
atoms with stoichiometric probability [4]. Despite having a
disordered atomic distribution after the phase transition, the
Cu3Au still shows some short-ranged order [1, 3], which can
be decreased by increasing the temperature.
The disordering process entrails an entropy change in the
system. However, this entropy change does not only have a
configurational origin; it also has a vibrational origin. When
the alloy transitions between an ordered L12 structure to a
disordered fcc structure, there is an obvious increase in en-
tropy due to the new ways of arranging the atoms in the
lattice. This entropy change of configurational origin will
be denoted as ∆Sdis

conf. On the other hand, there is an 0.8%
decrease in volume in the transition from an L12 structure
to an fcc structure [1]. Such decrease causes the frequency
of vibrations to be slowed down. Hence, there is an entropy
change associated with the change in frequency of vibrations,
which will be denoted as ∆Sdis

vib. When investigating the total
entropy change of the OD phase transition, the final result
of the entropy change will include both (if derived from heat
capacity data), in other words:

∆Sdis = ∆Sdis
conf + ∆Sdis

vib (14)
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2 Methods

2.1 Data Collection

The BD research paper provided the data for this project.
It consisted of measurements of the Heat Capacity (Cp) of a
Cu3Au sample across different temperatures in units of the
universal gas constant R. The measurements were taken from
300K to about 718.11K in the original article. However, for
this study, only temperatures between 500K and 718.11K
have been considered. The data was collected at approx-
imately 0.08K intervals giving a total of 2616 data points
(not taking into account those between 300K and 500K).
The background heat capacity was subtracted from the raw
data of the BD research paper, giving the quantity ∆CP .
Such subtraction was done to avoid including anything un-
related to the OD transition into the data.
The original paper gave in its supplementary material the
uncertainties on the data2:

σCp
= Cp · (−0.198 + 9.4 · 10−4 · T − 9.2 · 10−7 · T 2) (15)

σT = T · (0.001 − 9 · 10−7 · T ) (16)

Assuming the uncertainties in the baseline (values subtracted
to get ∆CP (T )) are small, the uncertainties on ∆CP (T ) are
the same as the uncertainties of CP (T ).
The following plot shows the relationship of ∆CP (T ) and T :
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Figure 1: Graph of ∆CP in units of R vs the Temperature
T measured in Kelvins. The dashed line represents the max-
imum the Heat capacity at about 675K.

The graph shows a peak in the heat capacity around
680K as was expected. Note that all quantities like ∆CP

or ∆Sdis (which will be obtained in the following sections)
are specific quantities (they are given in units of R).

2.2 Entropy of Disordering

The total change on entropy of the disordering process can
be calculated using the relation dS = CP

T dT . Hence, the

integral of
∫ Tf

T0

∆CP

T dT gives the total entropy change of the
disordering process. ∆CP is used instead of CP to avoid
adding anything that has nothing to do with the disordering
process.
The scaled data (the usual heat capacity data divided by the
Temperature) is presented in the following graph to show its
relationship with Temperature:
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Figure 2: Graph of ∆CP

T in units of R
K vs the Temperature

T measured in Kelvins. The dashed lines represent the max-
imum Heat capacity over temperature at about 675K.

The area under the curve obtained in Figure 2 gives the
entropy change due to the disordering process. If the dis-
ordering process starts at T = 500K and it ends at around
700K (Actually the process continues, but the data was not
provided for temperatures over 711.11K), Then the definite

integral
∫ Tf

500K
∆CP

T dT will give the entropy change of the
process up to the temperature Tf . Hence, the total entropy
change in the disordering process will be given by letting
Tf = TMax = 711.11K. However, as there is an interest in
knowing how the change in entropy evolves with Tempera-
ture (How does the entropy change evolve as you go through
the disordering process), Tf is defined as a variable that
ranges from all the temperatures available.
Given that the data for ∆CP

T is discrete, it is not possible to
solve the integral analytically. However, numerical solutions
are still possible. The mid point rule was used to calculate

the value of the integral
∫ Tf

500K
∆CP

T dT for different Tf .
The mid point rule states that:∫ b

a

f(x)dx ≈
∑
i

f(xi)δ(xi) Where: δ(xi) = xi+1 − xi

The mid point method breaks the function into rectangles of
width δxi

to calculate the area below it.
Using the mid point rule the integral (∆Sdis) was calculated
for different values of Tf . The relation between the entropy
of disorder and the temperature is shown in the plot below:

2The uncertainty on the temperature was provided directly by the authors of the BD paper as it was wrong in the supplementary materials
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Figure 3: Graph of the entropy change of the disordering
process vs Temperature

The figure shows that the real increase happens around
660-690, which agrees with what it was expected given the
shape of Figure 2. The total entropy change encapsulates
both the vibrational entropy change and configurational en-
tropy change discussed in the background section. Hence,
∆Sdis = ∆Sdis

vib + ∆Sdis
conf. The total entropy change of the

disrodering process is given by the value on the right edge of
the graph, as this value accounts for the entropy change due
to the disordering process between 500K and 700K

2.3 Uncertainties

It can be seen from Equations 15 that the uncertainties in CP

range from 0 to 0.3. In relative terms, they range from 4% to
0.026% (using the original data). In the case of temperatures,
the errors range from 0.2K to 0.3K, and in relative terms,
they are not even a 1% of the measured values. In conclu-
sion, the uncertainties of CP and T are minimal. This makes
that the overall uncertainty in the entropy change will also be
small, or at least sufficiently small, so that they do not make
a difference when comparing the total entropy change with
the ideal entropy of mixing. Furthermore, the provided data
show only minor deviations from a smooth function. Given
that the area under ∆Cp

T graph gives the entropy change, the
slight positive deviations of the data will counterweight the
small negative deviations in the sum, making the deviations
even smaller in the entropy case.

3 Results And Discussion

3.1 Heat Capacity

The graph obtained in Figure 1 reflects exactly the phase
transition that the background section mentions. It can be
seen that there is a peak of around 675K and that the ef-
fect of disordering becomes effective at around 560K; before
that, the Heat capacities stays almost constant and near 0.

The provided data contains some negative ∆Cp values in low
temperatures, but those arise from errors in the subtraction
of the baseline. After a conversation with Dr Poon, it was
discovered that the given values had been subtracted a base-
line by hand instead of taking the baseline from literature
values. This could result in minor discrepancies between our
study and the key paper. The value used by Dr Poon seems
to be higher than the one used in the BD paper, leading to
slightly smaller values in the final result.

3.2 Entropy of Disordering

Figure 3 gives the entropy change of disordering across dif-
ferent temperatures. It can be seen from the graph that
up to 560K there is no entropy change, which agrees with
the data of the heat capacities that were zero at that range.
Furthermore, it can be seen that the minor errors in that
area (that gave some negative values in ∆Cp) have almost
no effect on the final result as the expected result in that
region (0, as the alloy, has not yet started the disordering)
is obtained from the entropy graph. The shape of the graph
makes sense given the data of Figure 2. The rapid increase
of the entropy between 660K and 680K is explained by the
lambda type peak present in both Figures 2 and 1. Hence,
even a simple integration method as the mid-point rule is
enough to capture this phase transition’s essential behaviour
(in terms of entropy change).

3.3 Ideal Entropy mixing

The total entropy of disordering can be compared to the ideal
entropy of mixing. The ideal entropy of mixing is given by
the equation:

∆Sideal = −R(χA ln(χA) + χB ln(χB)) (17)

In units of R the Equation 17 gives:

∆Sideal = −(χA ln(χA) + χB ln(χB)) (18)

For this particular case, 18 gives ∆Sideal = 0.562 in units
of R, given that χA = 0.75 and χB = 0.25. The total en-
tropy change (∆Sdis) of the OD transition between 500K
and 711.11K was calculated to be 0.445 in units of R.
Comparing this result to the ideal entropy of mixing it is
possible to get an excess entropy:

∆Sexcess = ∆Sdis − ∆Sideal = −0.117 (19)

In an ideal scenario, where the initial sample is fully ordered
at the beginning of the process and the sample becomes fully
disordered at its end, the configurational entropy change
would have been given by the ideal entropy of mixing as
explained in the background theory. Only the vibrational
change would be left in the entropy excess if this is the case.
In such scenario, Equation 19 would be:

∆Sexcess ≈ ∆Sdis
vib (20)

Hence, the excess entropy would likely be positive in this
case.
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However, it is not the case that the initial sample is fully
ordered at the start, and also it is mentioned in the BD
article that even after the phase transition, there is some
short-range order in the fcc structure. This contributes to
the configurational entropy being smaller than in the ideal
scenario. Hence, the excess entropy is negative as the config-
urational entropy obtained with the integration is insufficient
to compensate for the subtraction of the ideal entropy of mix-
ing. While there is still another positive term in the equation
(the vibrational entropy change), this is not enough to com-
pensate for the defect of the configurational entropy change
(The vibrational component can be found independently, and
other studies have found that this value is significantly less
than the configurational contribution, accounting for about
13% of the total entropy change [1, 3]). The value of the
excess entropy can become more positive if a greater range
of temperatures is considered. Increasing the temperature
has the effect of decreasing the short-range ordering present
in the fcc structure [1]. Hence, it makes the configurational
entropy change closer to the ideal entropy of mixing. Given
the conditions in which the experiment was performed, it is
more plausible to state that increasing the temperature will
generally reduce the difference between the ideal entropy of
mixing and the total entropy change, making the excess tend
towards zero. However, the excess could become positive
by increasing the temperature if the configurational entropy
change becomes similar to the ideal entropy of mixing and
if the vibrational change can compensate for the difference
between them. This analysis assumes that the vibrational
entropy change is both positive and almost constant as the
temperature raises, this hypothesis has been found to be rea-
sonable above 700K [1, 3].

3.4 Further Studies

This section explores what further studies could be carried
away to find more precise conclusions.
The first possibility is considering a greater range of temper-
atures for the Heat capacity data. This data could be used to
calculate the configurational entropy change at larger tem-
peratures as the vibrational part can be calculated indepen-
dently (other studies have found that the vibrational entropy
change does not change much as the temperature is increased
above 700K [3]. Hence, getting a larger range of tempera-
tures would allow to calculate the total entropy change at
larger temperatures and hence calculate the configurational
entropy change, which could then be compared to the ideal
entropy of mixing. Overall, this comparison would estimate
how disordered the Cu3Au sample is at different tempera-
tures.
There are other possibilities to consider. In this analysis and
the one proposed in BD, the total entropy change is assumed
to be given by contributions of a vibrational and a configura-
tional origin only. However, other studies in Cu3Au suggest
that this might be a too simplistic approach, as other con-
tributions might be non-negligible [5], specially a change in

entropy or electronic origin [5]. If the assumption that other
contributions are not negligible is taken to be true, then it
would not change the analysis done in this paper up to the
point where it was concluded than in ideal conditions (start-
ing with a fully ordered sample and ending with a fully disor-
dered sample) would give an excess entropy (∆Sdis−∆Sideal)
equal to the vibrational change contribution (∆Sdis

vib). Equa-
tion 20 would need to be corrected to:

∆Sexcess ≈ ∆Sdis
vib + ∆Sdis

electronic (21)

The sign of this new corrected version is not that easy to in-
terpret because while the first term has been determined in
different studies to be positive[1, 3], the second term could be
negative, as suggested by other studies[5]. This also makes
the analysis of the sign obtained in our study more difficult
as the sign in ideal conditions is unknown. However, it is
still true that the configurational entropy change will tend
to the ideal entropy of mixing. Overall, the conclusion that
increasing the temperature will make the excess more posi-
tive is still valid as the difference between the configurational
and the ideal entropy of mixing will decrease. The conclu-
sion holds only if the vibrational and electronic changes do
not vary much with the increase of temperature, which is
a reasonable assumption. Hence, further studies could try
to measure the electronic contribution independently for dif-
ferent temperatures, then the original hypothesis of only in-
cluding the vibrational and configurational changes could be
adequately challenged.

4 Conclusion

The analysis shows that the total entropy change from the
OD transition of Cu3Au is smaller than the ideal entropy
of mixing at 711.11K, giving an excess entropy of −0.117.
This result was explained in terms of the conditions that
make the configurational entropy change tend towards the
ideal entropy of mixing (perfect order and disorder in each
of the transition limits) not being met. Therefore, the overall
result of the study is plausible in light of the relevant the-
ory. Finally, other possible hypotheses were presented about
the contributions to the total entropy change. Those hy-
potheses would not change the conclusion of this study (as
the reasons to explain the discrepancy between the ideal en-
tropy of mixing and the total entropy change would still be
valid). However, they could be a good starting point for fu-
ture studies as determining the contributions from different
origins independently at different temperatures is required
to get a precise value of the configurational entropy change
(which is hard to measure directly).
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