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Abstract

This report briefly introduces perturbation theory and discusses the divergence of
perturbation series and how to deal with it using Padé Summation. Then it ex-
plores the % expansion method in Quantum mechanics. In particular, two different
methods to obtain the coefficients of this expansion are explained using the Hydro-
gen atom as an example. This method is then validated by looking at the results
that it provides for different physical systems and comparing them with literature
values. Finally, the % expansion is used to analyse the energy levels of the Yukawa
potential in great detail.
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1 Introduction

The need for approximations is at the very core of Physics and is particularly important
in Quantum Mechanics. Unfortunately, exactly solvable problems are rare in the context
of Quantum mechanics and the Schrodinger Equation. Even for simple-looking systems
such as the anharmonic oscillator V(z) = }112 + ;1)\1174 the Schrodinger Equation cannot
be solved exactly.

Therefore, several techniques have been developed to obtain approximate solutions for
the SE over the years. Perturbation Theory is a particularly successful strategy in this
context, which allows us to decompose a seemingly difficult problem into an infinite set
of recursively easy ones [1].

1.1 Perturbation Theory

1.1.1 Mathematical Formalism

Perturbation theory in mathematics is a collection of techniques that allows us to get
approximate solutions to hard problems that are difficult (or impossible) to solve exactly
[1]. In general, all perturbation problems can be summarized in three steps:

1. Introduce a parameter A

2. Assume that the solution to the problem takes the form of > 7 ' a, A" and get the
coefficients

3. Sum the series to get the result

In particular, in the context of quantum mechanics, perturbation theory is used to solve
the eigenvalue problem of the form:

(Vi) + W @) ) v = Bv(@) 1)

dz?

With the additional boundary condition of )(x) — 0 as |z| — oo, we assume that we can
solve the problem (j—; + V(:IZ‘)) Y(x) = E(x) subject to the same boundary conditions
.

Therefore, we seek solutions to both the eigenfunctions and the eigenvalues as power
series in A. That is, we need to find the coefficients of:

En = io En)\n (2)

Y@) =) tn(@)A" (3)

Therefore, we just have to find all the coefficients and then sum the series to obtain an
answer to the problem. While the problem of getting the coefficients might seem more
difficult at first sight, there are standard techniques to obtain them [I], and the real
problem usually comes in summing the series.



1.1.2 Divergence of Perturbation Theory

While Perturbation theory in Quantum Mechanics is taught ubiquitously at an under-
graduate level, it is usually not explained that perturbation series usually have a zero
radius of convergence, meaning that they diverge for all values of A. Formally that means
that the sequence of partial sums

E(\N) = i ap\" (4)

does not have a limit (S) for any value of .

The fact that the perturbation series diverges is closely related to the underlying analytic
structure of the function E()) in the complex A plane [I]. In particular, if E(\) has
a sequence (infinite) of branch points with a limit point in the origin, the perturbation
series will have a zero radius of convergence [I]. This is precisely what happens in the
case of the Anharmonic Oscillator [2]. A more detailed explanation of the divergence of
perturbation theory and how to analyse the analytic structure of E()) in the complex
plane can be found in Reference [1].

1.2 Dealing with the Devil

In 1828 Abel said, ” Divergent series are the invention of the devil, and it is shameful to
base them on any demonstration whatsoever”. If, as explained in the previous section,
perturbation series in Quantum mechanics usually have a zero radius of convergence, then
the natural question is: Why are we using them?

Once we know that the perturbation series >~ a, A" diverges, we can no longer say that
this series is equal to the Energy eigenvalue. Still, it is true that the Energy eigenvalue
is asymptotic to the perturbation expansion [I]:

EQ)) ~ Y A (5)

Therefore, when we find a divergent series using perturbation theory, we really find an
asymptotic representation of the function E(\). Many powerful methods have been de-
veloped to extract the correct answer (E())) with arbitrary precision from its asymptotic
representation when given by a divergent series [3]. We will now introduce one of these
methods, the Padé Approximant, as it will be relevant to the project.

1.2.1 Padé Summation

n

Let us assume that we have a function f(z) represented by the power series > a,2",
which might be divergent. We construct the Padé approximants (Piy(z)) as the ratio of
two polynomials.

ij: A"
n=0 "—"N



Additionally, It is possible to choose By = 1 without loss of generality. Then, the remain-
ing coefficients (there are M + N + 1 of them left to determine) are chosen such that the
first M + N + 1 coefficients of the Taylor expansion of the resulting Padé Approximant
match the first M + N + 1 coefficients of the sum »_~  a,z".

In many cases, it is found that P} (z) — f(z) in the limit M, N — oo even if the original
power series that represents f(z) is divergent [3]. Therefore, we can try to use the Padé
Approximants to approximate the function represented by the initial power series. There
are stills many unknowns in the general convergence properties of the Padé Approximants
[3]. However, this method has been successfully applied in Quantum mechanics. For
instance, it has been applied to the perturbation series of the Yukawa potential [4]. This
section is just meant to briefly introduce the method of Padé Summation, a more in-depth
study of the method can be found in Reference [3].

2 The % Expansion in Quantum Mechanics

We will now introduce The ]%, expansion, an alternative analytic method to traditional
perturbation theory that can be used to obtain approximate solutions to the Schrodinger
Equation. Instead of using the coupling constants of the potentials as expansion pa-
rameters, we will use the number of dimensions as the expansion parameter. It has the
advantage of not requiring the Hamiltonian to be given as a sum of a solvable part and a
perturbation. However, before examining how such expansion can be generated, we must
analyse how the Schrodinger Equation is formulated in N dimensions.

2.1 Schrodinger Equation in N Dimensions

The Time independent Schrodinger Equation can be expressed as
HY(r) = EV(r) (7)

Where H is the Hamiltonian of the system and ¥(r) is an eigenfunction of this operator
with eigenvalue E. Assuming atomic units (A = m = 1), it is possible to express the
Hamiltonian in N dimensions as:

X \vZ

HN=—7§+VN (8)
N denotes the number of dimensions, Vy(r), is the potential in N dimensions and V%
is the N-dimensional Laplacian operator. In Cartesian coordinates, the N-dimensional
Laplacian and the position vector are defined in the usual manner:

N g2 N
V=252 r=) we (9)
4 =1

While Cartesian coordinates might appear more attractive, (hyper)spherical coordinates
turn out to be more useful if the potential is (hyper)spherically symmetri(ﬂ Therefore we

'Meaning that the potential only depends on the modulus of the position vector



move from the usual Cartesian coordinates {x;,i = 1, ..., N} to hyperspherical coordinates
{0;,i =0,...N—1} in which we identify 6y = r. It is possible to express the N-dimensional
Laplacian operator in terms of this new set of coordinates [5]

13 N r92\2
V=5 2 gagan 1= 2 () o h =T (10
=0

=1
The Angular momentum components L;; are defined as:

h
_2

Z Z

In Equation p; is the momentum operator canonically conjugate to x; and it is defined

as p; = —i% = [5]. Expressing the momentum operators in terms of the hyperspherical

coordinates is also possible p, = —i Z;.V:_Ol %%% [5]. There are a total of W
components of the angular momentum tensor, and these are the generators of rotations
in N dimensions, and they form the basis of the Lie Algebra of the O(N) group [5]. For
example, in 3 dimensions, there are three components of the angular momentum Lqs, L3

and Lgs, which correspond to the usual L., L, and L, respectively.

At this stage, it is useful to introduce the Casimir invariants, which are defined as follows:

kE+1 J
izzz L k=1,...,N—1 (12)
:2 =1

In the case N = 3 there are only two of these operators, L? and L2, which correspond to
the usual L? and L* = L3 + L} + L? respectively [6]. It can be shown (see Ref [5] for a
complete explanation) that the Laplacian operator in N dimensions can be expressed in
terms of the radial component and L3, _; in the following way:

ﬁ—i_ r Or 72

Vi = (13)
Given that the Casimir Invariants commute with each other it is possible to find a com-
mon set of eigenfunctions that we denote as Yy, _,ax_o...a (01,02, ...,0n_1) such that
LiY/\N—l,)\N—an)\l (01, 82, ey QN—I) = >\kY)\N71,)\N727.“’)\1 (81, 02, ey GN—I)- Furthermore, it is
possible to show (see Ref [5] for more details) that A\ = lx(lx + k — 1) where [} is an
integer and that once [, has been chosen [;,_; can only take values from 0 to l,. Therefore,
it is possible to label the eigenfunctions using the set of integers I, [5].

Yanianwezn (01562, s On_1) = Yoo iy oin (01,02, .., 08_1) (14)
LiYig inomts (01,09, Oy 1) = (e + k= DYoL iy gt (01,00, ., 05 1) (15)

The set of functions Yj, | iy o...is(On_1,0N_2,...,61) are known as generalized spherical
harmonics [5]. In our particular case in which k goes up to N — 1, [y_; can go from 0 to
oo and [y_o from 0 to [y_; and so on. It is useful to denote Iy_; simply as [ and Lﬁvfl
as L?.



In the case of a spherically symmetric potential, the Hamiltonian of the system commutes
with L2, which means that it is possible to find a complete set of eigenfunctions that are
simultaneously eigenfunctions of Hy and L?. Therefore it is sensible to express ¥(r) as:

U(r)=R(r)Yiiy_ o 101,02, ....0n_1) (16)

Where R(r) is the radial part of the wavefunction and is still to be determined. If now we
substitute Equation [16|into the Schrodingers Equation, it is easy to obtain an equation
for R(r):

{—% (j—; + NT_ 16%) - W + VN(T)} R(r) = ER(r) (17)

Which is the Radial Schrodinger Equation (RSE). In this case, [ is used to identify the

angular momentum quantum number. It is useful to introduce the function u(r) =
N-1

r~2 R(r) as substituting it into Equation [17|leads to further simplification:

[_%% + (k — 18)7"(5 —3) + VN(T)} u(r) = Eu(r) (18)

In which £ = N + 2[. Equation is the key equation on which the following sections
will be based.

2.2 Lowest Order Approximation or the Large N Limit

At this stage, we have expressed the N-dimensional Schrodinger’s Equation in simple
terms but have yet to make any approximation. Therefore, it is time to start extracting
useful information from the equations presented in the section above.

Firstly, it is necessary to carefully set up the problem we are trying to solve. We are inter-
ested in solving the Schrodinger Equation for a D (usually D=3) dimensional potentia]ﬂ,
which can be written as V(r). However, instead of directly solving this problem, let us
solve a seemingly more complicated and general problem. Let us solve the Schrodinger
Equation in N dimensions for a potential V that can be written asE|:

k2

VN(T)Zm

V(r) (19)
This problem reduces to the initial problem when N = D (as k = N + 2l as before) and
when N # D, the potential preserves the essence of V(r) (it is V() multiplied by some
value). The important point is that if we can write a solution for this problem (or an
approximate solution), we just have to let N = D at the end of the calculation to get
the solution of our original system. The factor of is usually absorbed by defining:

V(r) = o [0

1
(D+21)2

If we want to be completely general with the number of dimensions, we can just (D+2l) —
k at the end of our calculation. This will produce a result that works for all dimensions
simultaneously, but we are usually just interested in the case D = 3.

2Here, D is just a value, not a parameter
3Where N is a parameter, meaning that we have to solve the problem for all N



Note that this choice of N-dimensional problem that we want to solve (mainly how we de-
fine Viy(r)) is not unique, but we need the problem to reduce to the initial D-dimensional
problem when N = D; in some instances, other choices might be beneficial [3; [§]. How-
ever, using this choice of Viy(r) allows to rewrite Equation |18 as follows:

L& (1-p0-3 - _E
e + +V(r)| u(r) = ﬁu(r) (20)

8r2

In the large k£ limit, the eigenfunctions of the system will become peaked towards the
value ro, which is the value that minimizes the leading contribution of the potential
Vess(r) = g + V(r)[T], and the energy eigenvalues will tend towards the value [T 5]

Eoo = kQ‘/;ff(To) (21)
ro is defined from the condition [%L:m = 0. For finite N, the value given by E is
only an approximation of the real energy eigenvalue. Given that we are usually interested

in three-dimensional cases, the approximation of the Energy by E., does not provide an
excellent answer.

At this stage, it is helpful to verify how effective the F., approximation is for the ground
state energy of a 3D potential. The Hydrogen atom offers an excellent example as it can
be solved exactly. Therefore, the E,, approximation can be compared with the exact
value of the ground state energy.

Hydrogen Atom
The application of this method to the Hydrogen atom (V(r) = 7762, D = 3) results in

E = % if we want to be completely general with the number of dimensions we can
.. 4 .
let D — N giving F,, = _k2§ . The Hydrogen Atom can be solved exactly in any number

of dimensions, and the exact answer of the Ground State energy in N dimensions is:
4 . . . .
Fryact = (N’z—el)z [7; @]. In the 3-dimensional case, our approximation of the ground state

(1=0) becomes E,, = %64 [10]. The relative error of this first approximation is 55.5% in
the 3-dimensional case. In larger dimensions, the error on the first-order approximation

is attenuated.

It is clear that we need to develop a technique to add corrections to E., such that it
provides a satisfactory answer for finite N. These techniques will be explained in the
following sections.

2.3 Finite N corrections

The discussion above offers the leading term of the % expansion. However, this term is
often a poor estimate of the real value of the Energy eigenvalues of the system when we
set N = D = 3. Therefore, this section will delve into how the actual expansion in terms
of powers of % can be constructed to provide corrections for finite N (usually N = 3) and
how to do so for both the ground state and excited states.



2.3.1 Riccati Equation

This method can be used to obtain corrections for the ground state energy. At this stage,
it is useful to introduce the new coordinate x = r — rg, which leads to the function
g(x) = u(x + r9). Furthermore, it is possible to make the following Ansazt of g(z) [B} [7]:

glx) = e (22)

This Ansatz gives a nodeless wavefunction (as expected for the ground state)[5]. This
Ansatz can now be inserted into Equation [I8] and as the first term of the Energy series
is already known, it can be subtracted from the expression. After some simplification,
the resulting expression is:

3 B k
8r2(x)  2r%(x)
With Vopp = Vipp — Veps(ro) and & = E — k*Vip4(ro)

This is a Riccati Equation in terms of ¢f(x) [5], which gives the name to the method. At
this point, it is time to express both ¢j(z) and &, as power series of k.

= &o (23)

5 [6h()? + )] + KVags +

o0

b= Erk Z 05" () (24)

n=—1 n=-—1

These relations can be inserted in Equation and the coefficients of the same power
of k can be matched to obtain expressions for all the coefficients. The obtained relations
are shown below:

¢><‘”<x) 2veff< z) (25)
V2Vegs0(w) = B 4 22 (w) 4+ 2067 (@) (26)
Wiy é”(x) - Eé” - gr%) 3 [ @) + o) (21)

V2Ve é”)+ +Z¢ (@] s 0 (28)

The procedure to extract the coefficients from these relations is the following, first ¢ ()
is determined from the expression of the effective potential. Then the next equation is

evaluated at = 0 (value for which the effective potential V,;; vanishes) to obtain Eé_l

Having an expression for the first coefficient of the Energy is now possible to get ¢(()1)(x)
from the same equation [7; [5]. The process is repeated for each relation until we reach
the desired number of coefficients.

Coulomb Potential Example

At this stage, testing the method with the simple case of the Hydrogen Atom is helpful.
Figure |1| shows the partial sums Ey(n) = >0, E(()j 'k=3 as a function of n (the upper
limit of the sum). The coefficients of the sum were calculated by implementing the
relations in equations [21-24] in Mathematica and using recursion to get the coeflicients.

Memoization was used to help speed up the calculations of the recursive algorithm.

7
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Fig. 1: Partial sums of the % Expansion of the Ground State Energy of a particle in
a Coulomb Potential, the series converges to -0.5 (in atomic units), which is the exact
result of this problem and that value is represented as a dashed line in the plot.

It can be seen from the figure that in the case of 3 Dimensions, the Energy series seems
to converge to the correct result (-0.5 in atomic units). The convergence rate is also
satisfactory as only a few terms are required to get reasonably close to the correct result
(with only six terms, the accuracy of the expansion is 99.3%).

The functions ¢f(z) calculated when getting the Energy coefficients can be used to re-
construct the radial wavefunction [7].

¢x) =Y opla)k™" (29)
o) = exp{ 1> ¢3<x>k"} (30
R(r) = Cr— 7 g(a(r)) (31)

C'is a constant that can be determined by imposing the normalization condition on R(r).
The plot in Figure[2] shows the estimate of the Radial distribution function for the ground
state of the hydrogen atom in 3 dimensions using three terms of the expansion, the exact
result (obtained from [11]) is also present in the figure for comparison.

——estimate
—— Exact

0.5

| R(r)[*r?

r in a.u.

Fig. 2: The Figure shows the estimate of the radial probability density as a function
of the radial distance compared to the exact known result for the ground state of the
Hydrogen Atom. The estimate was constructed using only the first three terms of the %
expansion.

10



The performance of the estimate with only three terms of the series is quite remarkable
as it can already capture the behaviour of the exact result. It was chosen to show the
estimate including only three terms, as the difference between the estimated curve and
the exact one becomes negligible once more terms are added.

2.3.2 Excited States

So far, we have only discussed the ground state of the system. However, the method
discussed above can be adapted to generate an expansion for excited states. The first
thing to bear in mind is that the method outlined in the section above is valid for all
states with no radial nodes [7]. That means that in the case of the Hydrogen atom, this
is valid for states that satisfy the equation n — [ — 1 = 0 where n is the radial quantum
number (n = 1 for the ground state), so it is valid for 1s, 2p, 3d..E|

Before generalizing the method to states with j radial nodes, it is perhaps easier to look at
the case of states with one radial node. In the Riccati method, we proposed g(z) = e?(®)
for nodeless states, so for states with one radial node, we propose the following Ansatz

g(x) = (z = €)' (32)

Where C gives the position of the node of the state [7]. This Ansatz is now substituted
int Equation which gives:

S0 @)+ P@) = O) = 6w) + (2~ O) [RVegy + (k42 ) r72@)| = (o - O

2 8
(33)

All that is left now is to substitute ¢, &, C' by power series in % in the following way:

€ = i EMWE™ (34)
¢lx) = oM@k (35)
C = f: cmpn (36)

Inserting this power series into Equation [33] it is possible to obtain a set of recursive
relations analogous to the ones described in Equations [20-23] by matching the powers of
k. Appendix [A] shows the relations obtained for this case.

These relations were implemented in Mathematica to obtain the coefficients of the ex-
pansion of the states with one node of the Hydrogen atom. In the case of the Hydrogen
atom, those are the states that satisfy the equation n —{—1 =1, so the states 2s, 3p and
so on. Figure 3| shows the Estimates on the radial distribution function for the states 2s
and 3p. The exact results (obtained from [I1]) are included for comparison.

4So far we have calculated both the Energy and the wavefunction of the 1s state, for which we
took 1=0, to generate a result for the next nodeless states we modify the value of 1 in the definition of
k=N +2l.
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Fig. 3: The Figure shows the Estimated radial probability density as a function of the
radial distance for the 2s and 3p states. The exact result for these states is also provided.
The estimates were constructed using only the first four terms of the % expansion. It is
impossible to distinguish between the two curves using the graph.

The convergence of the method is again impressive for these states; with only four terms
of the expansion, it can be seen that the estimated wavefunction of all the states can
capture to correct behaviour of the exact result, including the location of the radial node.
Including more terms in the expansion only improves the result.

While it is interesting to see the estimate of the wavefunctions for the excited states of
the hydrogen atom, it is even more important to estimate the energy of the different
excited states. The plot in figure 4| shows the partial sums E(NV) for different states. The
states 2p contains no radial node and hence were determined using the method outlined
in Section and the states 2s and 3p have only one radial node, so the coefficients of
the expansion were determined using the recursion relations discussed in this section.

0
e 3p
< — 28
LS ,,,,,,,,,,,, T
| | | | | | | | | | |

-2 -1 0 1 2 3 4 5 6 7 8 9 10

Fig. 4: Partial sums of the % Expansion of the Energy of a particle in a Coulomb
Potential for different bound states. A dashed line represents the exact results

The convergence of the expansion to the exact answer is, again, quite impressive for
this method. Including six terms of the expansion yields a 98.8%, 99.98%, and 99.96%
accuracy for the states 2s, 2p and 3p, respectively. Interestingly, this method can capture
the accidental degeneracy of the states of the Hydrogen atom. The states 2s and 2p have
the same energy despite the coefficients being calculated by different equations.

10



The only step required to generalize the method to states of j radial nodes is to modify
the initial Ansatz of the wavefunction to g(z) = II_,(z — C;)e®® [7]. Next, this Ansatz is
substituted into Equation[I§] After substituting the relevant power series, the coefficients
of the expansions are found by matching the different coefficients of the % series and by
establishing some recursion relations. While it is theoretically possible to do this for any
number of radial nodes, the equations soon become intractable, and the computing power
required to determine the coefficient increases rapidly.

2.3.3 Recursive Method

While the Riccati Equation method provides a systematic way of getting all the coef-
ficients of the % (or better %) expansion, it is not an efficient way of generating them.
When it was implemented in Mathematica, getting more than a few coefficients for all
but a particular class of potentials (such as the Coulomb or Yukawa Potential) was im-
possible. However, the Riccati method can be adapted such that the relations needed to
calculate the coefficients of the Energy expansion are simplified at the cost of a loss of

accuracy in the calculated wavefunction for large values of x.

As a reminder, we are trying to solve a D-dimensional problem with a potential in D
dimensions that can be written as the function V(r). In this case, we propose that
instead, we solve a more general N-dimensional problem with potential:

Vk

In which V* is a function similar to the function V' with different coupling constants
such that k V*( ) reduces to V(r) when N' = D. For example, if we are interested in
analysing V(r) = Ar + ¢’ 4+ % in 3 dimensions (D=3), then V*(z) = A*r + /" + &
with A* = (3 +20)%/2A, B* = (3 + 21)'/25,b* = (3 + 21)?b, it is easy to check that using
this definition of V*, Vi (r) reduces to V(r) for N=3. Again, if we can write a solution
for the general problem of the N-dimensional potential, we just have to set N = D at the
end to get the solution for the problem that we were trying to solve:

Vn(r) =kV*(—=), k=N + 2] (37)

Starting from , it is useful to introduce the coordinate transformation r = \/Ep, Under
this transformation Equation [18] becomes:

(D ) "

v(p) = u(Vkp) (39)

As before, in the large N limit, the eigenfunctions will be more and more peaked around
po, which is the minimum of the leading contribution of the potential, and the Energy
spectrum will tend towards [7]:

Es = kE™ = kVers(po) (40)
1 *

Vers(p) = 57 +V*(p) (41)

d

o Verflpmpy =0 (42)

11



As before, for the ground state, we introduce the substitution vy(p) = exp{¢(x(p))} with
z = vk(p — po) [7], which leads to the Riccati Equation:

1 3

S @+ @)+ kgt (S o) ) = (43

With e = E — kEC? and Vigs(z) = Vegp(p()) — Vegs(po). Furthermore, we define
W(z) = kVepr + (5 + &) p2(x) so that we can express the Riccati Equation on the
following way:

¢"(x) + ¢*(x) — 2W (z) +2¢ =0 (44)

We let y = vk and Then one substitutes the following expansions into the Riccati
Equation [6]:

€ — Z E(nfl)y2n (45)
n=1
o0 n+l (n) (n)
Dm 2 2 Cm 2m+1_ 2n—+1
023 (G @
W(z) =W + Wi%22) + (W + Wila®)y+ (47)

NE

(Wa=2 4 Wiman + W) (48)

n

||
I\

n

The W (x) coefficients are obtained by performing a Taylor expansion around x = 0.
Once these expressions have been substituted into the Riccati equation, we match by
powers of y and then by powers of x. This allows us to get a set of recursive relations for
all the coefficients. These can be found in Appendix [A] This method provides an easier
way to calculate the coefficients of the energy expansion at the expense of accuracy in
the wavefunction for large values of x [7]

3 The use of the % Expansion in Quantum Mechanics

So far in this paper, the % expansion has only been used for the Hydrogen atom. While
this poses an excellent introductory example, it is an exactly solvable problem, so the
utility of the % is still unverified. This section aims to show that the % expansion can
be utilized to estimate with great accuracy the energy eigenvalues of different systems
that do not have an exact answer. Firstly, a numerical analysis of some potential will be
conducted using this method. Then a more in-depth study of the Yukawa potential will

be carried out using the % expansion as starting point.

3.1 Numerical Analysis of Selected Potentials

The first step towards validating the utility of the % expansion technique is to estimate
the energy eigenvalues of different physical systems and compare the results with the

12



literature values. The expansion coefficients for the different potentials were calculated
using the method developed in Section [2.3.3]

The algorithm to obtain the series expansion was implemented in python. The relations
of Section [2.3.3] and Appendix [A] were implemented in a recursive style, but memoization
was used to speed up the calculations. The effect of round-off errors was analysed by
comparing the Python implementation to one in Mathematica, in which all the expres-
sions are treated symbolically. It was found that while the round-off errors start being
insignificant, they become significant about the 15th order of the expansion series. Then,
around the 20th order, they take over the computation, rendering the result useless.
Therefore, all the results will be presented only up to the 10th order in the % expansion
so that the results can be completely accurate.

In many cases the % expansion gives an asymptotic representation of the Energy. In
general, this means that when adding the terms of the series, the partial sums converge
to the correct result up to a given term, where they drift away from this result. It was

found that ten terms of the series give a good convergence for the investigated potentials.

All the code developed for this project (In python and Mathematica) can be found on
the Github repository of the project [12]

3.1.1 The Laser Dressed Coulomb Potential

The Time-dependent Schrodinger Equation for a hydrogen atom in an electromagnetic
field is given by:

62

1 e 2
10U ,t:{—(A —At)——}\lf ot 19
(e t) = |- (h+ A0) -S| v (49)
For the case of an intense monochromatic laser, the vector potential is described by:
A(t) = A(Z cos(wt) + ysin(wt)) [13]. The Schrodinger Equation can be changed into a
more suitable form by including the definition of A [13].

1 e
o (r,t) = | =—p° — } v
t
e
ANt) =—— dt’ At 1
Mo == = [ ara) (1)
This potential can now be expanded as:
—e? < reA )

N — 1+ ... 2

V() NEwy v (52)

With A\ = [A| = 2% (time independent). It has been shown in [I4] that this series

wmec
converges rapidly and that, therefore, it is reasonable to approximate the potential by

retaining only the leading term,V (r) = \/% [15} [13], in which A is related to the inten-
sity (I(25)) and frequency (w(s™!)) of the Laser by the equation A = 6.5 x 10*w=2V/T

[15]. This potential can now be treated as an approximate stationary potential that de-
scribes the energy levels of the hydrogen atom in the electromagnetic wave field [15]; [13].
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Therefore, we will now explore the Energy levels of this system for different values of A
using the % expansion. A portion of the obtained results is shown in Table

E in atomic units (m=h=e=1)

A 1s 2s 2p 3p

1 -0.275748 0.098219 -0.113078 -0.052024
Numerical [15] -0.274891 -0.092679 -0.113024 -0.052060

5 -0.107130 -0.053026 -0.068179 -0.037366
Numerical [15] -0.107081 -0.053171 -0.068187 -0.037361

10 -0.063738 -0.037157 -0.046199 -0.028313
Numerical [15] -0.063739 -0.037154 -0.046199 -0.028314

Table 1: Estimate of the energy of different states of the system described by the potential
Vr)= —% for two different values of A using the % expansion. The numerical results
are provided for comparison with the estimates

It can be seen that the convergence of the first ten terms of the % series is good for all
the values of X\ used. It was found that the convergence of the method improves when
increasing the value of A and that for a given value of A, it worsens for states with more
nodes in the radial wavefunction (higher excited states). This is a general behaviour we
observe when using the % expansion [5]. Additionally, from the results of Table , it
can be deduced that one of the effects that the electromagnetic field has on the energy
levels is that it removes the accidental degeneracy present in the Hydrogen atom, now
two states with the same value of the radial quantum number but different [ do not have
the same energy.

3.1.2 The Spiked Harmonic Oscillator

The spiked harmonic oscillators potentials refer to a class of potentials described by the
equation:

V(r)=r*+ ,% (53)

A is a positive coupling constant, and « is a positive constant determining the type of
singularity on the origin [16]. One of the interesting properties of this potential is that
the coulomb-like term % creates an infinite potential barrier at the origin, which means
that this term cannot be neglected even for small values of A. On the other hand, it is not
possible to neglect the first term of the interaction when A — oo because it is responsible

for the existence of bounded states.

Additionally, there are two different regions of for . For o < g, the ground state has
a perturbation series in powers of A but in the region a > g (supersingular region)

standard perturbation theory fails [I7]. Therefore, we will now use the % expansion to
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obtain values for the energy of the ground state of this system for the case o = g which
is in the supersingular region and the simple case of a =1

The results for the Ground state energy of the system with a = g and for different values
of the coupling constant are shown below in table

E of the Ground State in atomic units (2m = h = 1)

A % Numerical [I8§] Error (%)
0.01 3.0331630 3.036729 0.12
0.1 3.2688843 3.266873 0.06
1.0 4.3161857 4.317311 0.03
10 7.7351097 7.735111 1.68 x 107°
100 17.5418902 17.541889 6.84 x 107°
1000 44.9554848 44.955485 4.45 % 1077

Table 2: Estimate of the energy of the ground state of the system described by the
potential V(r) = r? + 7%/2 for different values of A using the + expansion. The numerical
results are provided for comparison with the estimates

The results obtained with our method for the a = g are in good agreement with values

obtained by numerically integrating the Schrodinger Equation. It was also found that the
convergence of our results improves in the region where the coupling constant is large.

On the other hand, The results obtained for the case of the charged harmonic oscillator
and different values of A\ are presented below in table [3]

E of the Ground State in atomic units (2m = h = 1)

A % Exact [17] Error (%)
0.01 3.01127608 3.01127601 2.32 x 1076
1.00 4.05787497 4.05787701 5.03 x 1075
10.0 10.5774667 10.5774834 1.58 x 10~*

Table 3: Estimate of the energy of the ground state of the system described by the
potential V(r) = r? + 2 for different values of \ using the + expansion. The numerical

results are provided for comparison with the estimates

The convergence of the % expansion retaining ten terms was extremely successful. The
results show that the opposite behaviour as in the case of a = g as the convergence is

better for small values of the coupling constant.
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3.2 The Yukawa Potential

The following equation describes the Yukawa potential:

efAr

VYukawa =—a (54)

,
This potential tends to the Coulomb-like potential (=%) in the limit r — 0, and it is
exponentially damped for large values of r. It belongs to the class of Coulomb-screened
potentials, and it has a variety of applications in different branches of physics (see Refer-
ences [19; 20] as examples). Additionally, it has the interesting property of having both
bounded and scattering states [21].

Given that there is no exact answer to the Schrodinger equation for this potential, several
methods have been employed in the past to study them, including the le expansion. This
section explains how the above methods can be adapted to study this system in great
detail (The method was initially proposed in [§]) and provides some of the results obtained
while studying them.

3.2.1 Adapting the Riccati Equation Method

It is possible to slightly adapt the Riccati Equation method developed in section [2.3.1
to obtain the coefficients of the ]lv expansion in the case of the Yukawa potential up to
very high orders, we will now exemplify it with the Ground State (states with no nodes).
However, it can be generalized to excited states. Therefore, the first step in the method

is to define V(7). In this case, we chose to define it as [22]:

(—(D+§l)2)\r>
Valr) = 2R (55)
M (D4 20)%r

This potential reduces to the usual Yukawa potential when we set N = D. We are
interested only in the 3-dimensional case, so we can directly substitute D = 3. The
advantage of this choice of potential is that the exponential factor goes to 1 in the large
k limit. We now proceed as usual by defining

( —(3+20)2xr )
S e R
— ae

Vi) = - (56)

With a = m This can now be substituted into Equation . As before, we define

the effective potential in the large k limit, giving Vss(r) = gz — 2 (the exponential term
goes to 1 in the large k limit) and as usual Ey, = k*V,;;(rg) = k*E-? | with ry being the
minimum of the effective potential. Therefore, E(-?) = —2a.

To obtain the other coefficients of the series, we make the usual change x = r — ry, and
we make the Ansatz u(x) = e?® which leads to:

bt ey ENTAOG DT

(57)

5 [00r + 8] + Vs + (§ - 5

k=1
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And as before, V,;; = Vijp — Viyp(ro) and & = E — k?V,;4(ro). This is similar to With
an additional term that comes from Taylor expanding the exponential in powers of %
Now we make the same substitutions as before:

=Y EME ¢(x) =Y ¢ (x)k™" (58)

n=—1 n=-—1

And we match the powers of k£ to obtain a set of recursive relations that will allow us to
obtain the coefficients.

This method works for states with no radial nodes, that is, states that satisfy n—[{—1 =0
[22] where n is the radial quantum number (we expect this system to behave similarly to
the case of the Coulomb potential [22]). To generalize the method for states with i radial
nodes (those that satisfy the equation n — [ — 1 = i), we modify the Ansatz to:

u(w) = Ty (& = Cy)e? (59)

And we expand each C; as a power series on k, C; = > >° C’](”)k_”. Doing this is now
possible to find a set of recursive relations for the coefficients of these states too [22].

1

3.2.2 Summing the 5 expansion

This method has been implemented in Mathematica, and an analytic expression has been
found for the coefficients of the % expansion up to very high order (it was possible to
calculate around = 200 terms of the expansion for both potentials in reasonable computa-
tion time for different states). Once the coefficients have been found, it is time to extract
information from the series. However, suppose we try to directly calculate the partial
sums up to high order for N = 3 and for different values of the coupling parameter a and
screening parameter \. In that case, we will get a non-sensible answer for the Energy for
most values of a, A. This is a consequence of the ]lv expansion being a divergent series
and an asymptotic representation of the energy, which implies that naively adding up the
terms will not often work when high-order terms of the series are included [6].

While it might appear that we are gaining no information out of calculating high-order
terms of the series, it is usually the case that a lot can be extracted from divergent series.
For this particular case, two methods were tried to extract information directly from the
% expansion (A Padé Approximation of the series and a Padé-Borel summation), and
they both failed. Therefore, an alternative approach was used. Following [§], it was found
that we can restructure the % series as a perturbation series of the parameter 5 = 2 that

is to say:

i EME™ - 42 i an (k)" (60)
n=0

n=-—2

Restructuring the partial sums in powers of J instead of in powers of k£ makes it possible
to obtain the coefficients that one would obtain using standard perturbation theory [§].
Therefore, it is possible to obtain the coefficients of the traditional perturbation series
using the % series. However, it must be noted that there is not a 1-1 correspondence
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between the two series. That is to say, calculating the first ¢ coefficients of the % expansion
will not suffice to obtain the first ¢ coefficients of the perturbation series.

The first coefficient of the perturbation series, ag(k), corresponds to the case 5 = 0.
Therefore we know that it will be equal to the % expansion of the hydrogen atom [§], which
means that it involves an infinite number of coefficients of the % expansion. However, we
already know that the expansion converges to the known exact solution in the case of the
Hydrogen atom [5], so the first coefficient ag(k) can be calculated without the need to
calculate an infinite number of coefﬁcientsﬂ Subsequent terms in the perturbation series
do not involve infinite coefficients of the %, but we must be careful when moving from
one series to the other.

For example, if we calculate the partial sum including the first 13 terms of the % expansion
(of the states with no radial nodes) and we restructure the result as a series of 5 we obtain:

(3420 (3+20)* 111 1\ (342
(s (St - i) e (- ) S 00)
(61)

While higher powers than 3% are found when restructuring the partial sum, these do not
match the perturbation series’ coefficients. This occurs because those terms depend on
higher order coefficients of the % It is possible to check up to what order of perturbation
series the partial sum of the % expansion series up to order ¢ provides by comparing the
series on (3 that you obtain in using the partial sums of the % expansion up to order %
and 7 + 1.

At first hand, it might appear that we have accomplished nothing. We still cannot try
to directly sum the series for most of the values of 5. However, It has been shown that a
Padé Summation of this series can be used to obtain accurate resultsﬁ [4; 21]. Therefore,
taking a slight detour makes it possible to extract useful information from the coefficients
calculated in the method outlined in the previous section.

3.2.3 Analysis and Results

Using the coefficients of the % expansion to calculate the coefficients of the perturbation
series and making a Pade approximation of the perturbative series, the energy eigenvalues
of the system described by the Yukawa potential were estimated to great accuracy for
different values of the screening parameter. Without any loss of generality, we set a = 1
to compare our results with the literature, so 5 = .

The values of the Energy (in atomic units) for different states and values of A are shown
in Table[dl The values of Reference [24] are provided for comparison.

5Using our formulation the first coefficient is ag = (k_1*2k4 for states with no nodes

2(3+20)1

6Tt is vital to bear in mind that we have not shown th)aé the) perturbation series of this system has

a zero radius of convergence, we have just noted that the perturbation series seems to diverge for most
the values of 8. Even if the series has a small radius of convergence * (which seems unlikely), we can
use the Padé summation method to obtain accurate results outside of the region of convergence of the

perturbation series [23].

18



FE in atomic units (m =h = 1)

1s 2p
A *~ Ref [24] ~ Ref [24]
0.01 -0.490075 -0.49005 -0.115245 -0.11525
0.02 -0.480296 -0.48030 -0.105963 -0.10596
0.05 -0.451816 -0.45180 -0.0807404 -0.08074
0.1 -0.407058 -0.40706 -0.0465344 -0.04654
0.2 -0.326809 -0.32681 -0.00410068  -0.00410
0.5 -0.148117 -0.14812 - -
1.15 -0.0004559 -0.00046 - -
25 3p
A % Ref [24] * Ref [24]
0.005 -0.120074 5 -0.12005 -0.0507082 -0.05070
0.01 -0.115293 -0.11529 -0.0461531 -0.04616
0.02 -0.106148 -0.10615 -0.0378524 -0.03785
0.05 -0.0817712 -0.08177 -0.0185578 -0.01856
0.1 -0.0499283 -0.04993 -0.00158867  -0.00159
0.2 -0.0121079 -0.01211 - -
0.3 -0.000091 -0.00009 - -

Table 4: Estimate of the energy of different states of the system described by the potential
e— AT

V(r) = —%— for different values of A\. The values were calculated by making a Padé

with the first 25 coefficients in perturbation theory (Obtained through the % expansion).

The accuracy of our method’s results is impressive in all cases. One of the peculiarities
of the Yukawa potential is that it has both bound and scattering states [21]. Each state
has a value of A, often called A\*, for which that bound state ceases to exist (the energy
goes to the continuum) [2I]. In Table [4] the energies of the different states have been
presented up to the approximate value of A\* for each state. An important feature of our
analysis is that it gives good results for all the range 0 < A < \* for the different states.

Furthermore, It is possible to use this method to try and estimate the value of lambda
(Aerit) for which no bound states exist, that is, the A* of the ground state. If we plot our
values for the energy for the ground state for larger values of A than the ones presented in
Table [4] we find that it starts in the Coulomb value and it tends towards £ ~ 0 (Which
would happen at A = Ay but then they reach a maximum and they start decreasing
monotonically. The region in which it starts decreasing monotonically corresponds to
the unphysical region of A > A for which the bound state does not longer exist (and
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therefore, our analysis is not valid in that region). The graph of the ground state Energy
as a function of A is shown in Figure [5

_05 | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

A

Fig. 5: Padé of the Perturbation Series of the ground state energy including 50 terms for
different values of A, including values larger than the estimated critical parameter.

Hence, it is possible to find an approximate value of the parameter A\, by numerically
determining the maximum of the Energy — A\ graph. The value of A, found using this
method was Mgy = 1.19061, which is extremely close to the accurate value of A,y =
1.1906122105(5) found in Reference [25].

Another important feature of this system is that the exponential factor has the effect of
lifting the accidental degeneracy on the energy levels that was present in the case of the
Hydrogen atom, as in the case of the Laser Dressed Coulomb Potential, two levels with
the same radial quantum number but different 1 now do not have the same eigenvalue. It
is interesting to see how that difference evolves as a function of the screening parameter.
For that purpose, Figure [0] shows the Energy curves of the states 2s and 2p for different
values of A, and each of the graphs is plotted up to the A\* for each state.

0 —

FE in au
\

—0.1F —— State 2p
—— State 2s

0 0.2
A

Fig. 6: Energy curves obtained for different values of the screening parameter for the
states 2s and 2p of the system with a Yukawa potential

As expected, in the limit A\ — 0, the two Energy curves meet as the potential reduces
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to the usual Coulomb potential and the degeneracy is recovered. In general, it is seen
that the difference between the levels increases with the value of the screening parame-
ter. Regarding ordering energy levels, for a given value of n, the energy increases with
1. While this was only numerically confirmed for the limited set of investigated states
(1s,25,2p,3p,3d), Reference [15] confirms this behaviour is indeed characteristic of the
Yukawa potential and true for all the states.

Finally, analysing the improvement gained by transforming the % expansion to a tradi-
tional perturbation series and performing a Padé on it is interesting. The plot on Figure
shows the Energy — A graph generated using the Perturbation Series (blue) and the
graph generated by using the first five coefficients of the % expansionﬂ for the case of the
Ground State.

0
—0.1F
= - T
= 02} _— —
= ~ - T~
& —0.3 |
—04 | e —— Five Coefficients of % expansion
- —— Padé of Perturbation Expansion
_0‘5 | | I I I
0 0.2 0.4 0.6 0.8 1

A

Fig. 7: The Figure shows the Energy curves of the ground state as a function of A that
are obtained through the Padé Summation of the perturbation series (blue) and the direct
evaluation of the first five terms of the 5 expansion (red)

Given that the values of the perturbation series are extremely accurate for the region
0 < XA < Ayt it can be used as a measure of accuracy when comparing it to the values
given by the red curve. While using the directly the % expansion yields decent results
in the region A\ < 0.3, in the region 0.3 < A < A.4; it is not able to capture the correct
behaviour of the ground state Energy. Therefore, it is evident that transforming the %
expansion to the perturbative series has allowed us to extend the domain in which our
analysis is accurate.

While for the purpose of the report, only the Yukawa potential was analysed using this
method up to high order, it is also possible to slightly adapt it to study the Expontentially
Cosine Screened Coulom (ECSC) up to very high order. Reference [22] outlines the
method in this case and works out the first orders.

"This number of coefficients was used as it gave a good convergence for the largest region of A
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4 Conclusion and Further Work

The numerical results obtained in Section |3| show that using a small number of terms of
the % expansion yield a good description of the Energy eigenvalues of different physical
systems for low-lying states. Furthermore, the expansion coefficients can be obtained
using a simple set (in the case of low-lying states) of recursion relations that can be easily
implemented in any computer language, and the computing power required to generate
the first coefficients is negligible (none of the computations took more than 10 seconds
to run). The combination of the method’s accuracy with a few coefficients and the fact
that they can be easily calculated makes this method powerful for obtaining high-quality
estimates of the Energy eigenvalues of the Schrodinger equation for different potentials.
Given that this method gives remarkably accurate results for low-lying states, it can be
combined with WKB methods which are more accurate for highly excited states [26].

Additionally, this paper has also shown an example in which the expansion coefficients
up to high order (around 200) were calculated and used to analyse with great detail the
system described by the Yukawa potential.

Despite the evident success of the techniques explained in this paper, it is important
to mention some of the shortcomings of the methods used and of the % expansion as a
whole. This also provides an excellent opportunity to discuss possible options for further
work on the project.

Firstly, the method used to determine the series coefficients becomes almost intractable in
the case of states with more than two radial nodes. It becomes increasingly hard to obtain
a set of recursive relations. And even if these are found, they become more complicated
(which would increase the computational time required to get the coefficients). A possible
way around this problem is to look at other methods for generating the % expansion.
A natural continuation of the project would be to look into the Hypervirial method
for generating this expansion. Reference [5] describes alternative several methods of
obtaining the series, and the Hypervirial method to obtain the % expansion for the case

of the ECSC potential is used in [27].

Secondly, the series can have slow convergence and worsens in the case of excited states.
This issue can be solved by using the Shifted % expansion instead of the regular % In
the Shifted ]lv series, the expansion parameter is no longer k but k = k — a, where a is a
parameter that is determined on physical grounds and has the effect of accelerating the
convergence of the series. This new parameter generally depends on the radial quantum
number, so it improves the convergence for excited states. An introduction to this method
can be found on [28] and References [I5] and [I6] apply in the case of the Laser Dressed
Coulomb Potential and the Spiked Harmonic Oscillator respectively.

Finally, the method used to obtain information from the divergent % series in the case
of the Yukawa potential requires an intermediate step of restructuring the partial sums
as a traditional perturbation series. It was impossible to extract the information directly
from the coefficients of the original expansion despite using two different methods (Padé
Summation and Borel-Padé Summation). Therefore, it would be interesting to try and
investigate further why this is happening and whether other methods might be applicable

in this case. The first step towards this goal would probably be estimating the asymptotic
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growth of the % expansion coefficients.
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A Appendix One: Mathematical Relations

Recursive Relations for states with two Radial nodes (Riccati
Method) [5]

0 (2) = = /2Veps(2) (62)

o egg@)0a) = [BV 4 267 (@) 4 2r72(@)]| +60(a) (63)

2oy ()60 (w) =2 | B+ 260 (@) 4 (67 — 22w - (61
0 [ B 4 Z60() + 60 @60 @) + 3r7(@) | +60)

(65)

2\2Veg (@00 (a) = | BO) 4 260 a) + 6000 - (66)
OO [BO + 200 (a) + 60()6a) + 2 (607) — 2r(w)| -

(67)

O[B4 260 (w) + 9000 a) + 2rw)| +60()

(68)
o\/2Vor )0 (@) =e(EOD 1 L) 4 L3 6 g @) (69

V)

3

1 1 n—m
(m) (n—m—1) (n—m—1)1 (p) (n—m—p—1) .
Cm (gomm) 1 Loy 4 LS g0 @)gmr i ()

m=1 p=—1
(10
0 (BO 4 260() + g0 @)g (@) + 5607 — 2r(w)) -
@
o™ [E(_l) + %gb(_l)’(x) + ¢ (1) (z) + %T_2($)] + (72)
oV (), n > 2 (73)

It is not hard to see that the equations are more complicated than the ones obtained for
the nodeless states. Furthermore, extracting the different coefficients from these equations
is also a harder process. One starts by obtaining an expression for ¢~ using the same
relation as we used before, then we differentiate the next equation, and we evaluate it
at © = 0 to obtain an expression for E(-Y. Using the same equation now that we know
all the coefficients at the right-hand side, we can get an expression for ¢(°). In the third
equation we start by evaluating it at x = 0, which gives CY) and then we repeat the
process of differentiating to obtain E() and then we obtain ¢™). This process can be
repeated to obtain the necessary coefficients of the expansion.
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Recursive Relations for states with one Radial node (Recursive
Method) [6]

n i+1
O =~ ( 2Wim i+ 2(m + )0, +23 3 DY el ]) (74)
i=1 j=1
n—1 1+1 n—1 i+1 ' .
DM =~ < oW+ (2m + 1)DY, + >3 " DYDI Y+ 3TN o]@oj:_—;—ﬂ)
i=1 j=1 i=0 j=0
(75)
n—1
1 n n 7 n—i—
B =2 (—05 o =3 oy ”) (76)
i=0
With D -V 2W2 ) Dfﬁm = 0721)2 =0 and DS:) = C’Sr?) =0if m <0 (also D(()n) =0).

Recursive Relations for states with two Radial nodes (Recursive
Method) [6]

(n) = Z Ak S m+1 (77)
(n) = Z a Tmnﬂkﬂ) 207(721 (78)
1 n—1
— (m=1) _ (n—Fk)
1 n i+l
n (2n+1) n—i
O = —— <—S — oW+ 2m + 1)C0, +23 T DY mﬂ)j) (80)
2D1 i=1 j=1
1 n—1 1+1 n—1 i+1
n 2n n—i—1
ol =~ (ot om0+ S i+ 5 e
2D, i=1 j=1 i=0 j=0
(81)
n—1
n— 1 m n 2n 7 n—i—1
B 1>:§<Té '~ D" + 2w ’—;cébé )) (82)

With D\ = —/2w”, D, = ¢, = 0 and DY = €5 = 0if m < 0 (also DJ” = 0).
To obtain this recursion relations we make the Ansatz v(p) = (vy — A(y))e?@®) and we
expand A(y) = Y07 | ay*"
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